Contravariantly Finite Resolving Subcategories over Commutative Rings
نویسنده
چکیده
Contravariantly finite resolving subcategories of the category of finitely generated modules have been playing an important role in the representation theory of algebras. In this paper we study contravariantly finite resolving subcategories over commutative rings. The main purpose of this paper is to classify contravariantly finite resolving subcategories over a henselian Gorenstein local ring; in fact there exist only three. Our method to obtain this classification also recovers as a byproduct the theorem of Christensen, Piepmeyer, Striuli and Takahashi concerning the relationship between the contravariant finiteness of the full subcategory of totally reflexive modules and the Gorenstein property of the base ring.
منابع مشابه
One-tilting Classes and Modules over Commutative Rings
We classify 1-tilting classes over an arbitrary commutative ring. As a consequence, we classify all resolving subcategories of finitely presented modules of projective dimension at most 1. Both these collections are in 1-1 correspondence with faithful Gabriel topologies of finite type, or equivalently, with Thomason subsets of the spectrum avoiding a set of primes associated in a specific way t...
متن کاملModules of G-dimension zero over local rings with the cube of maximal ideal being zero
Let (R,m) be a commutative Noetherian local ring with m = (0). We give a condition for R to have a non-free module of G-dimension zero. We shall also construct a family of non-isomorphic indecomposable modules of G-dimension zero with parameters in an open subset of projective space. We shall finally show that the subcategory consisting of modules of G-dimension zero over R is not necessarily a...
متن کاملThe Gorenstein Projective Modules Are Precovering
The Gorenstein projective modules are proved to form a precovering class in the module category of a ring which has a dualizing complex. 0. Introduction This paper proves over a wide class of rings that the Gorenstein projective modules form a precovering class in the module category. Let me explain this statement. There are two terms of mystery, “Gorenstein projective modules” and “precovering...
متن کاملThick Subcategories of Modules over Commutative Rings
For a commutative noetherian ring A, we compare the support of a complex of A-modules with the support of its cohomology. This leads to a classification of all full subcategories of A-modules which are thick (that is, closed under taking kernels, cokernels, and extensions) and closed under taking direct sums.
متن کاملHigher dimensional Auslander-Reiten theory on maximal orthogonal subcategories
We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...
متن کامل